Lie algebraic generalization of quantum statistics

نویسنده

  • N. I. Stoilova
چکیده

Para-Fermi statistics and Fermi statistics are known to be associated with particular representations of the Lie algebra so(2n+1)≡ Bn. Similarly paraBose and Bose statistics are related with the Lie superalgebra osp(1|2n)≡ B(0|n). We develop an algebraical framework for the generalization of quantum statistics based on the Lie algebras An, Bn, Cn and Dn.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic generalization of quantum statistics

Generalized quantum statistics such as para-Bose and para-Fermi statistics are related to the basic classical Lie superalgebras B(0|n) and Bn. We give a quite general definition of “a generalized quantum statistics associated to a Lie superalgebra G”. This definition is closely related to a certain Z-grading of G. The generalized quantum statistics is determined by a set of root vectors (the cr...

متن کامل

Lie superalgebraic framework for generalization of quantum statistics

Para-Bose and para-Fermi statistics are known to be associated with representations of the Lie (super)algebras of class B. We develop a framework for the generalization of quantum statistics based on the Lie superalgebras A(m|n), B(m|n), C(n) and D(m|n).

متن کامل

Realization of locally extended affine Lie algebras of type $A_1$

Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...

متن کامل

Braided Matrix Structure of the Sklyanin Algebra and of the Quantum Lorentz Group

Braided groups and braided matrices are novel algebraic structures living in braided or quasitensor categories. As such they are a generalization of super-groups and super-matrices to the case of braid statistics. Here we construct braided group versions of the standard quantum groups Uq(g). They have the same FRT generators l± but a matrix braided-coproduct ∆L = L⊗L where L = l+Sl−, and are se...

متن کامل

A classification of generalized quantum statistics associated with classical Lie algebras

Generalized quantum statistics such as para-Fermi statistics is characterized by certain triple relations which, in the case of para-Fermi statistics, are related to the orthogonal Lie algebra Bn = so(2n + 1). In this paper, we give a quite general definition of “a generalized quantum statistics associated to a classical Lie algebra G”. This definition is closely related to a certain Z-grading ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004